Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis
نویسندگان
چکیده
Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2, nod1 has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.
منابع مشابه
Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis
Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF ...
متن کاملFission Yeast Nod1 Is a Component of Cortical Nodes Involved in Cell Size Control and Division Site Placement
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cy...
متن کاملRegulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis
Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. ...
متن کاملThe Rho-GEF Gef3 interacts with the septin complex and activates the GTPase Rho4 during fission yeast cytokinesis
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1-Rho5) and seven Rho GEFs (Scd1, Rgf1-Rgf3, and Gef1-Gef3). The GEFs for Rho2-Rho5 have not been un...
متن کاملMechanisms for concentrating Rho1 during cytokinesis.
The small GTP-binding protein, Rho1/RhoA plays a central role in cytokinetic actomyosin ring (CAR) assembly and cytokinesis. Concentration of Rho proteins at the division site is a general feature of cytokinesis, yet the mechanisms for recruiting Rho to the division site for cytokinesis remain poorly understood. We find that budding yeast utilizes two mechanisms to concentrate Rho1 at the divis...
متن کامل